miRNA-1283 Regulates the PERK/ATF4 Pathway in Vascular Injury by Targeting ATF4

نویسندگان

  • Ling He
  • Jing Yuan
  • Qingyun Xu
  • Ruixue Chen
  • Liguo Chen
  • Meixia Fang
چکیده

BACKGROUND In our previous study, we found significant differences in the mRNA and microRNA (miRNA) levels among hypertensive patients with different degrees of vascular endothelial cells damage. These differences were closely associated with endoplasmic reticulum stress (ERS)-related proteins. Moreover, compared to the control group, the expression of transcription factor activating factor 4 (ATF4) was also found to be significantly different in the hypertensive patients with different degrees of vascular endothelial cells damage groups. These results were confirmed using gene prediction software, which showed synergistic effects between ATF4 and miR-1283. ATF4 is a key molecule in ERS. Three ERS pathways exist:protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and inositol-requiring enzyme-1 (IRE-1)-induced apoptosis. The PERK pathway is the most important and also includes the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and ATF4. In this report, we studied the regulatory effects of miR-1283 and ATF4 on the PERK-eIF2α-ATF4 signaling pathway using human umbilical vein endothelial cells (HUVECs) and mice. METHODOLOGY/PRINCIPAL FINDINGS We verified the relationship between miR-1283 and ATF4 using a luciferase activity assay and observed the regulatory effects of miR-1283 and ATF4 on the PERK-eIF2α-ATF4 signaling pathway in vivo and in vitro. CONCLUSIONS/SIGNIFICANCE ATF4 is a target gene of miR-1283, which regulates the PERK-eIF2α-ATF4 signaling pathway by inhibiting ATF4, and it plays a critical role in inducing injury in HUVECs and mouse heart tissue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin II induces endoplasmic reticulum stress in podocyte, which would be further augmented by PI3-kinase inhibition.

INTRODUCTION Angiotensin II (Ang II) contributes to the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. On renal effects, Ang II plays an important role in the development of proteinuria and glomerulosclerosis by the modification of podocyte molecules and cell survival. In the present study, we investigated the effect of A...

متن کامل

PERK‐eIF2α‐ATF4‐CHOP Signaling Contributes to TNFα‐Induced Vascular Calcification

BACKGROUND Vascular calcification is a common feature in patients with chronic kidney disease (CKD). CKD increases serum levels of tumor necrosis factor-α (TNFα), a critical mediator of vascular calcification. However, the molecular mechanism by which TNFα promotes CKD-dependent vascular calcification remains obscure. The purpose of the present study was to investigate whether TNFα-induced vasc...

متن کامل

Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indic...

متن کامل

PERK Pathway Activation Promotes Intracerebral Hemorrhage Induced Secondary Brain Injury by Inducing Neuronal Apoptosis Both in Vivo and in Vitro

The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway was reported to exert an important role in neuronal apoptosis. The present study was designed to investigate the roles of the PERK signaling pathway in the secondary brain injury (SBI) induced by intracerebral hemorrhage (ICH) and its potential mechanisms. Sprague-Dawley rats were used to establish ICH models ...

متن کامل

Rifampicin Protects PC12 Cells from Rotenone-Induced Cytotoxicity by Activating GRP78 via PERK-eIF2α-ATF4 Pathway

Rifampicin has been proposed as a therapeutic candidate for Parkinson's disease (PD). We previously showed that rifampicin was neuroprotective in PD models in vivo and in vitro. However, the molecular mechanisms underlying are not fully elucidated. In this study, using the comprehensive proteomic analysis, we identified that the 78 kDa glucose-regulated protein (GRP78), a hallmark of the unfold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016